首页> 外文OA文献 >Scaling Up Estimation of Distribution Algorithms For Continuous Optimization
【2h】

Scaling Up Estimation of Distribution Algorithms For Continuous Optimization

机译:扩展连续分布估计算法   优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Since Estimation of Distribution Algorithms (EDA) were proposed, manyattempts have been made to improve EDAs' performance in the context of globaloptimization. So far, the studies or applications of multivariate probabilisticmodel based continuous EDAs are still restricted to rather low dimensionalproblems (smaller than 100D). Traditional EDAs have difficulties in solvinghigher dimensional problems because of the curse of dimensionality and theirrapidly increasing computational cost. However, scaling up continuous EDAs forhigher dimensional optimization is still necessary, which is supported by thedistinctive feature of EDAs: Because a probabilistic model is explicitlyestimated, from the learnt model one can discover useful properties or featuresof the problem. Besides obtaining a good solution, understanding of the problemstructure can be of great benefit, especially for black box optimization. Wepropose a novel EDA framework with Model Complexity Control (EDA-MCC) to scaleup EDAs. By using Weakly dependent variable Identification (WI) and SubspaceModeling (SM), EDA-MCC shows significantly better performance than traditionalEDAs on high dimensional problems. Moreover, the computational cost and therequirement of large population sizes can be reduced in EDA-MCC. In addition tobeing able to find a good solution, EDA-MCC can also produce a useful problemstructure characterization. EDA-MCC is the first successful instance ofmultivariate model based EDAs that can be effectively applied a general classof up to 500D problems. It also outperforms some newly developed algorithmsdesigned specifically for large scale optimization. In order to understand thestrength and weakness of EDA-MCC, we have carried out extensive computationalstudies of EDA-MCC. Our results have revealed when EDA-MCC is likely tooutperform others on what kind of benchmark functions.
机译:由于提出了分布算法估计(EDA),因此在全球优化的背景下,人们进行了许多尝试来提高EDA的性能。到目前为止,基于多元概率模型的连续EDA的研究或应用仍仅限于相当小的尺寸问题(小于100D)。传统的EDA由于维数的诅咒及其迅速增加的计算成本而难以解决高维问题。但是,仍然需要按比例放大连续EDA以进行更高维度的优化,这受到EDA的显着特征的支持:由于显式估计了概率模型,因此从学习的模型中可以发现问题的有用特性或特征。除了获得良好的解决方案之外,对问题结构的理解可能会非常有用,尤其是对于黑盒优化而言。我们提出了一种具有模型复杂度控制(EDA-MCC)的新型EDA框架,以扩大EDA规模。通过使用弱因变量识别(WI)和子空间建模(SM),EDA-MCC在高维问题上表现出比传统EDA更好的性能。此外,在EDA-MCC中可以减少计算成本和大人口的需求。除了能够找到一个好的解决方案之外,EDA-MCC还可以产生有用的问题结构表征。 EDA-MCC是基于多元模型的EDA的第一个成功实例,可以有效地应用多达500D问题的通用类。它还优于专门为大规模优化而设计的一些新开发算法。为了了解EDA-MCC的优缺点,我们进行了广泛的EDA-MCC计算研究。我们的结果表明,EDA-MCC在什么样的基准功能方面可能胜过其他公司。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号